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1 Introduction to complex number:

No one person “invented” complex numbers, but controversies surrounding the use of these numbers existed
in the sixteenth century. In their quest to solve polynomial equations by formulas involving radicals, early
dabblers in mathematics were forced to admit that there were other kinds of numbers besides positive

integers.Equations such as x2+2x+2 = 0 and x3 = 6x+4 that yielded “solutions” 1+
√
−1 and 3

√
2 +

√
−2+

3
√
2−

√
−2 caused particular consternation within the community of fledgling mathematical scholars because

everyone knew that there are no numbers such as
√
−1 and

√
−1, numbers whose square is negative.Such

“numbers” exist only in one’s imagination, or as one philosopher opined, “the imaginary, (the) bosom child of
complex mysticism.” Over time these “imaginary numbers”did not go away, mainly because mathematicians
as a group are tenacious and some are even practical.A famous mathematician held that even though “they
exist in our imagination .... nothing prevents us from ... employing them in calculations.” Mathematicians
also hate to throw anything away.After all, a memory still lingered that negative numbers at first were
branded “fictitious.” The concept of number evolved over centuries; gradually the set of numbers grew
from just positive integers to include rational numbers, negative numbers, and irrational numbers.But in
the eighteenth century the number concept took a gigantic evolutionary step forward when the German
mathematician Carl Friedrich Gauss put the so-called imaginary numbers or complex numbers, as they were
now beginning to be called on a logical and consistent footing by treating them as an extension of the real
number system.

Definition 1.1. A complex number is any number of the form z = a + ib where a and b are real numbers
and i is the imaginary unit.

1.1 Basic properties:

(i) The real number a in z = a+ ib is called the real part of z; the real number b is called the imaginary
part of z. The real and imaginary parts of a complex number z are abbreviated Re(z) and Im(z),
respectively. For example, if z = 3− 2i, then Re(z) = 3 and Im(z) = −2.

(ii) A real constant multiple of the imaginary unit is called a pure imaginary number. For example,z = 6i
is a pure imaginary number.

(iii) Two complex numbers are equal if their corresponding real and imaginary parts are equal.

(iv) The complex numbers can be visualized as the usual Euclidean plane by the following simple identifi-
cation:
The complex number z = x+iy ∈ C is identified with the point (x, y) ∈ R2. For example, 0 corresponds
to the origin and i corresponds to (0, 1). Naturally, the x and y axis of R2 are called the real axis and
imaginary axis, because they correspond to the real and purely imaginary numbers, respectively (see
figure1).

1



Figure 1: The complex plane

The natural rules for adding and multiplying complex numbers can be obtained simply by treating all
numbers as if they were real, and keeping in mind that i2 = −1. If z1 = x1 + iy1 and z2 = x2 + iy2, then

z1 + z2 = x1 + iy1 + x2 + iy2 = (x1 + x2) + i(y1 + y2)

z1z2 = (x1 + iy1)(x2 + iy2) = x1x2 + ix1y2 + iy1x2 + i2y1y2 = (x1x2 − y1y2) + i(x1y2 + iy1x2)

If we take the two expressions above as the definitions of addition and multiplication, it is a simple matter
to verify the following desirable properties:

(a) Commutative law: z1 + z2 = z2 + z1, z1z2 = z2z1 ∀z1, z2 ∈ C

(b) Associative law: (z1 + z2) + z3 = z1 + (z2 + z3), (z1z2)z3 = z1(z2z3) ∀z1, z2, z3 ∈ C

(c) Additive inverse: For every complex number z = (x, y), there is a unique −z = (−x,−y) ∈ C such
that z + (−z) = (−z) + z = 0

(d) Multiplicative inverse: For every complex number z ̸= 0, there is a unique z−1 ∈ C such that zz−1 =
z−1z = 1

1.2 Exponential form of a complex number:

A nonzero complex number z = r(cosθ+isinθ) can be written in the form z = reiθ and it is called exponential
form of complex number.

1.3 De Moivre’s formula

Theorem 1. If z = cos(θ) + isin(θ) then (cos(θ) + isin(θ))n = cos(nθ) + isin(nθ),∀θ ∈ R, n ∈ Z

Application of De Moivre’s formula :

(i) Compute (1 + i)1000

Solution: The polar representation of (1 + i) is
√
2
(
cos

(π
4

)
+ isin

(π
4

))
Applying De Moivre’s formula, we obtain (1 + i)1000 = (

√
2)1000

(
cos

(
1000π

4

)
+ isin

(
1000π

4

))
= 2500 (cos (250π) + isin (250π)) = 2500
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(ii) Prove that

sin5t = 16sin5t− 20sin3t+ 5sint

cos5t = 16cos5t− 20cos3t+ 5cost

Solution: Using De Moivre’s theorem to expand (cost+ isint)5, then using the binomial theorem, we
have

cos5t+isin5t = cos5t+ 5icos4tsint+ 10i2cos3tsin2t+

10i3cos2tsin3t+ 5i4costsin4t+ i5sin5t

cos5t+isin5t = cos5t− 10cos3(1− cos2t) + 5cost(1− cos2t)2+

i(5(1− sin2t)2sint− 10(1− sin2t)sin3t+ sin5t)

comparing real and imaginary part both sides and we get the desired result.

Definition 1.2. The function ez defined by:

ez = excosy + iexsiny

is called the complex exponential function.

Some properties of exponential function: If z1 and z2 are complex numbers, then

(i) e0 = 1

(ii) ez1+z2 = ez1ez2

(iii) ez1−z2 =
ez1

ez2

(iv) (ez1)n = enz1 , n = 0,±1,±2,±3,±4.......

(v) ez1+2πi = ez1 (Periodicity)

Example: Find the values of the complex exponential function ez at z = 2 + πi

Solution: For z = 2+πi, we have x = 2 and y = π, and so e2+πi = e2cosπ+ ie2sinπ. Since cos(π) = −1
and sin(π) = 0, this simplifies to e2+πi = −e2.

1.4 Logarithm of a complex number

Definition 1.3. The multiple-valued function Log(z) defined by:

Log(z) = loge|z|+ iarg(z) + i2nπ, n = 0,±1,±2,±3......

is called complex logarithm. If n = 0 then it is called principal value of the logarithm and it is denoted by
log(z).

Example: Compute the complex logarithm Log(z) for z = 1 + i.

Solution: It is clear that |z| =
√
2 and arg(z) =

π

4
.

Hence from the definition of Log(z) we write,

Log(z) = loge
√
2 + i

(
2nπ +

π

4

)
, n = 0,±1,±2,±3......

=
1

2
ln2 + i

(
2nπ +

π

4

)
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The principal value is log(z) =
1

2
loge2 +

iπ

4

Remarks: For any non zero complex number a we define the power az as az = ezLog(a).

Example: Compute ii

Solution: We write

ii = eiLog(i)

= e
i

(
ln|i|+i

(
2nπ+

π

2

))

= e
i

(
ln1+i

(
2nπ+

π

2

))

= e
−
(
2nπ+

π

2

)
, n = 0,±1,±2,±3......

1.5 Trigonometric and Hyperbolic Functions

Definition 1.4. The complex sine and cosine functions are defined by:

sinz =
eiz − e−iz

2i
cosz =

eiz + e−iz

2

similarly we define tanz =
sinz

cosz
, cotz =

cosz

sinz
, cscz =

1

sinz
, secz =

1

cosz

Some properties of Trigonometric functions:

(a) sin(−z) = −sin(z) and cos(−z) = cos(z)

(b) cosz + sin2z = 1

(c) sin(z1 ± z2) = sin(z1)cos(z2)± cos(z1)sin(z2)

(d) cos(z1 ± z2) = cos(z1)cos(z2)∓ sin(z1)sin(z2)

Example: Find all solutions to the equation sinz = 5.

Solution: We use the definition above to solve the equation

sinz = 5

=⇒ eiz − e−iz

2i
= 5 =⇒ e2iz − 10ieiz − 1 = 0

=⇒ w2 − 10iw − 1 = 0 let us put w = eiz

=⇒ w =
10i±

√
−100 + 4

2
=⇒ w = (5± 2

√
6)i

=⇒ eiz = (5± 2
√
6)i =⇒ iz = Log((5± 2

√
6)i)

=⇒ iz = ln(5± 2
√
6) + i(2nπ +

π

2
), n = 0.± 1,±2, .......

=⇒ z =
(
2nπ +

π

2

)
− iln(5± 2

√
6)

Definition 1.5. The complex hyperbolic sine and hyperbolic cosine functions are defined by:

sinhz =
ez − e−z

2
and coshz =

ez + e−z

2
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similarly we define tanhz =
sinhz

coshz
, cothz =

coshz

sinhz
, cschz =

1

sinhz
, sechz =

1

coshz

Some properties of Hyperbolic functions:

(a) sinh(iz) = isin(z) and cosh(iz) = cos(z)

(b) tan(iz) = itanhz

(c) sinh(−z) = −sinhz and cosh(−z) = coshz

(d) coshz − sinh2z = 1

(e) sinh(z1 ± z2) = sinh(z1)cosh(z2)± cosh(z1)sinh(z2)

(f) cosh(z1 ± z2) = cosh(z1)cosh(z2)± sinh(z1)sinh(z2)

1.6 Some selected problems:

1. Compute the following:

(a) i47 + i48 + i49 + ......i2021 + i2022

(b) i45.i46......i2021.i2022

(c)

(
1 + i

1− i

)16

+

(
1− i

1 + i

)16

2. z1, z2 are complex numbers such that z1 + z2 and z1z2 are both real. Prove that either z1 and z2 are
purely real, or z1 = z̄2.

3. Show that |sinhz|2 = sinh2x+ sin2y

4. Find the general value of (1− 4i)1+3i

5. find all general and principal values of Log(−5), Log(−2− 2i)

6. Let(1−
√
3i)n = xn + iyn, then show that

(a) xnyn−1 − xn−1yn = 4n−1
√
3

(b) Compute xnxn−1 − ynyn−1

7. Compute
(1− i)10(

√
3 + i)5

(−1− i
√
3)10

2 Theory of equation

Fundamental theorem of classical algebra:

Theorem 2. every algebraic equation has a root, real or complex.

Theorem 3. An algebraic equation of degree n has n roots and no more.

Proof. Let f(x) = a0x
n + a1x

n−l + + an be a polynomial with coefficients real or complex, of degree n.
Then a0 ̸= 0.
The equation f(x) = 0 is an algebraic equation of degree n. By the fundamental theorem, this equation has
a root, say α1.
Then f(α1) = 0 and by factor theorem, (x− α1) is a factor polynomial f(x).
Let f(x) = (x − α1)f1(x) where f1(x) is a polynomial of degree n − 1 with leading coefficient a0. By the
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fundamental theorem, the equation f1(x) = 0 has a root, α2.
Then f(α2) = 0 and by factor theorem, (x− α2) is a factor polynomial f1(x).
Let f(x) = (x− α2)f2(x) where f2(x) is a polynomial of degree n− 2 with leading coefficient a0.
If n > 2, we continue with the same reasoning and come to some polynomial fn−1(x) = a0(x− αn).

Therefore,

f(x) = (x− α1)f1(x)

= (x− α1)(x− α2)f2(x)

.............

= (x− α1)(x− α2)......(x− αn−1)fn−1(x)

= a0(x− α1)(x− α2)......(x− αn−1)(x− αn)

This shows that f(x) is expressed as the product of n linear factors, each factor corresponds to a root and
this proves that α1, α2, ..., αn are n roots of the equation f(x) = 0.
Now we shall prove that there cannot be more than n roots. If possible, let β be a root of the equation
f(x) = 0, where β is different from α1, α2, ..., αn. Since β is a root, f(β) = 0 and this would imply
a0(β − α1)(β − α2)......(β − αn−1)(β − αn) = 0.
This is impossible because a0 ̸= 0 and β − αi ̸= 0 for i = 1, 2, .., n. Therefore f(x) = 0 cannot have more
than n roots.
This completes the proof.

Theorem 4. If an equation with real coefficients has a complex root α + iβ then it has also the conjugate
complex root α− iβ.

Proof. Let f(x) = 0 be an equation of degree n with real coefficients and let α + iβ be a root of f(x) = 0.
It is obvious that n ≥ 2.
Let us divide f(x) by the product {x − (α + iβ)}{x − (α − iβ)}, i.e., by (x − α)2 + β2. Let q(x) be the
quotient and r(x) be the remainder.
Then the degree of q(x) is n− 2 and the degree of r(x) is at most one.
Since f(x) is a real polynomial and (x − α)2 + β2 is also a real quadratic, q(x) and r(x) are both real
polynomials and we assume r(x) = ax+ b where a and b are both real.
Therefore f(x) = [(x− α)2 + β2]q(x) + ax+ b.
Since α+ iβ is a root, f(α+ iβ) = 0, i.e., a(α+ iβ) + b = 0
or, (aα+ b) + iaβ = 0 and this implies aα+ b = 0, aβ = 0.
Butβ ̸= 0. Therefore a = 0 and consequently, b = 0.
So f(x) = [(x− α)2 + β2]q(x).
f(α− iβ) = [(α− iβ−a)2+β2]q(α− iβ) = 0 and this proves that (α− iβ) is a root of the equation f(x) = 0.
This completes the proof.

Let us consider the following examples:
Examples:

1. Solve the equation x4 + x2 − 2x+ 6 = 0, it given that 1 + i is a root.

Solution: Let f(x) = x4 + x2 − 2x+ 6 .
Since f(x) = 0 is an equation with real coefficients and 1 + i is a root of the equation, 1 − i is also a
root.
Therefore (x− 1− i)(x− 1 + i) = x2 − 2x+ 2 is a factor of f(x). Let f(x) = (x2 − 2x+ 2)q(x). Then
q(x) = x2 + 2x+ 3.
q(x) = 0 gives x = −1

√
2i. Therefore the roots of the equation are 1± i,−1

√
2i.

2. Determine the multiple roots of the equation x5 + 2x4 + 2x3 + 4x2 + x+ 2 = 0
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Solution: Let f(x) = x5 + 2x4 + 2x3 + 4x2 + x+ 2.
Then f ′(x) = 5x4 + 8x3 + 6x2 + 8x+ 1.
The h.c.f of f(x) and f ′(x) is x2 + 1 = (x+ i)(x− i)
Therefore the multiple roots of the equation are i and −i.

2.1 Descartes’ rule of signs.

Statement of the rule:
The number of positive roots of an equation f(x) = O with real coefficients does not exceed the number of
variations of signs in the sequence of the coefficients of f(x) and if less, it is less by an even number.

Application of Descartes’ rule of signs
Apply Descartes’ rule of signs to examine the nature of the roots of the equation x4 + 2x2 + 3x− 1 = 0

Solution:
Let f(x) = x4 + 2x2 + 3x− 1.
Then f(−x) = x4 + 2x2 − 3x− 1.
The signs in the sequence of coefficients of f(x) are + + +−.
There is only one variation of signs and therefore the number of positive roots off(x) = O is exactly 1.
The signs in the sequence of coefficients of f(−x) are + +−−.
There is only one variation of signs and therefore the number of negative roots of f(x) = 0 is exactly 1.
The equation has no zero root. Therefore the number of real root is 2. The equation being of degree 4 has
4 roots. Consequently, the number of complex roots of the equation is 2.

2.2 Relation between roots and coefficients

Let f(x) = f(x) = a0x
n + a1x

n−l + + an be a polynomial of degree n With coefficients real or complex.
Then a0 ̸= 0.
Let α1, α2, ..., αn be the roots of the equation f(x) = 0. Then

a0x
n + a1x

n−1 + + an

=a0(x− α1)(x− α2)......(x− αn−1)(x− αn)

=a0

[
xn −

∑
α1x

n−1 +
∑

α1α2x
n−2 − ......(−1)n(α1α2....αn)

]
,

where
∑

α1 = sum of the roots,∑
α1α2 = sum of the products of the roots taken two at a time,

... ... ... ... ... ... ...∑
α1α2.....αr = sum of the products of the roots taken r at a time.
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From the equality of polynomials it follows that

a1 = a0

(
−
∑

α1

)
a2 = a0

(∑
α1α2

)
a3 = a0

(
−
∑

α1α2α3

)
.......................

an = a0(−1)nα1α2.....αn

Therefore,∑
α1 = −a1

a0∑
α1α2 =

a2
a0

α1α2α3 = −a3
a0

..................

α1α2.....αn = (−1)n
an
a0

Example: Find the relation among p, q, r, s so that the product of two roots of the equation x4 + px3 +
qx2 + rx+ s = 0 is unity.

Solution: Letα, β, γ, δ be the roots and αβ = 1. Then

α+ β + γ + δ = −p (1)

(α+ β)(γ + δ) + αβ + γδ = q (2)

αβ(γ + δ) + γδ(α+ β) = −r (3)

αβγδ = s (4)

From(4), γδ = s and from(3) (γ + δ) + s(α+ β) = −r (5)

From (1) & (5) α+ β =
r − p

1− s

From (1) γ + δ = −p− r − p

1− s
=

ps− r

1− s

From (2)
r − p

1− s

ps− r

1− s
+ 1 + s = q

Or,(r − p)(ps− r) = (1− s)2(q − s− 1).

2.3 Transformation of equations

When an equation is given it is possible, without knowing its individual roots, to obtain a new equation
whose roots are connected With those of the equation by some assigned relation. The method of finding the
new equation is said to be a transformation. Such a transformation sometimes helps us to study the nature
of the roots of the given equation which would have been otherwise a difficult job.

Example: Transform the equation x4 + 4x3 + 7x2 + 6x − 4 = 0 into one which shall want the second
term and hence solve the given equation.

Solution: Let us apply the transformation x = y + h so that the transformed equation may want the
second term.
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The transformed equation is

(y + h)4 + 4(y + h)3 + 7(y + h)2 + 6(y + h)− 4 = 0

Or, y4 + y3(4h+ 4) + y2(6h2 + 12h+ 7) + y(4h3 + 12h2 + 14h+ 6) + (h4 + 4h3 + 7h2 + 6h− 4) = 0

By the given condition 4h+ 4 = 0, i.e., h = −1.
The equation reduces to y4 + y2 − 6 = 0.
The roots of the transformed equation are ±

√
2,±

√
3i.

Hence the roots of the given equation are −1±
√
2,−1±

√
3i.

2.4 Cardan’s method:

Let the cubic equation be

ax3 + 3bx2 + 3cx+ d = 0 (6)

This can be put in the standard form z3+3Hz+G = 0, where z = ax+b,H = ac−b2, G = a2d−3abc+2b3.
To solve the equation, let us assume z = u+ v.
Then z3 = u3 + v3 + 3uv(u+ v) = u3 + v3 + 3uvz =⇒ z3 − 3uvz − (u3 + v3) = 0.
Comparing this with z3 + 3Hz +G = 0, we have uv = −H,u3 + v3 = −G.

Therefore, u3 =
1

2
(−G+

√
G2 + 4H3), v3 =

1

2
(−G−

√
G2 + 4H3).

If p denotes any one of the three values of

{
1

2
(−G+

√
G2 + 4H3)

}1

3
, then the three values of u are p, ωp, ω2p

where ω is an imaginary cube root of unity.

And since uv = −H, the three corresponding values of v are
−H

p
,
−ω2H

p
,
−ωH

p
.

Hence the values of z are p− H

p
, ωp− ω2H

p
, ω2p− ωH

p

and the three values of x are
1

a

(
p− H

p
− b

)
,
1

a

(
ωp− ω2H

p
− b

)
,
1

a

(
ω2p− ωH

p
− b

)
.

This gives the complete solution of the given equation.
The method of solution is called the Cardan’s method of solution although the method owes its origin to
Tartaglia.

Example: Solve the equation x3 − 18x− 35 = 0

Solution: Let x = u+ v.
Then x3 = u3 + v3 + 3uvx
or,x3 − 3uvx− (u3 + v3) = 0
Comparing with the given cubic, we have uv = 6 and u3 + v3 = 35.

Therefore u3 =

{
1

2
(35 +

√
352 − 864)

}
= 27 and v3 =

{
1

2
(35−

√
352 − 864)

}
= 8

The three values of u are 3, 3ω, 3ω2 and the three values of v are 2, 2ω, 2ω2. Since uv = 6, we have
u+ v = 3 + 2, 3ω + 2ω2, 3ω2 + ω.

Hence the roots of the given equation are 5,
−5 +

√
3i

2
,
−5−

√
3i

2

2.5 Some exercise

1. Find the values of k for which the equation x4 + 4x3 − 2x2 − 12x + k = 0 has four real and unequal
roots.
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2. Solve the equations

(a) 3x3 − 26x2 + 52x− 24 = 0 ,

(b) x4 − 5x3 − 30x2 + 40x+ 64 = 0 ,

(c) x4 + 15x3 + 70x2 + 120x+ 64 = 0 ,

(d) 3x4 + 20x3 − 70x2 − 60x+ 27 = 0 ,

given that the roots are in geometric progression.

3. Solve the equation 2x3−9x2+7x+6 = 0 whose two roots α, β are connected by the relation 2α+β = 1.

4. The roots of the equation x3 + px2 + qx+ r = 0(r ̸= 0) are α, β, γ. Find the equation whose roots are
α+ β

γ
,
β + γ

α
,
γ + α

β

5. Obtain the equation whose roots exceed the roots of the equation x4 + 3x2 + 8x + 3 = 0 by 1. Use
Descartes’ rule of signs to both the equations to find the exact number of real and complex roots of
the given equation.

6. Apply Descartes’ rule of signs to ascertain the minimum number of complex roots of the equation

(a) x6 − 3x2 − 2x− 3 = 0

(b) x7 − 3x3 − x+ 1 = 0

(c) x7 − 3x3 + x2 = 0.

7. Solve by Cardan’s method:

(a) x3 − 12x+ 8 = 0

(b) x3 − 27x− 54 = 0

(c) x3 − 9x+ 28 = 0

(d) x3 + 9x2 + 15x− 25 = 0

(e) x3 + 3x2 − 3 = 0
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